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Der neue Fortran-Standard bringt fiir das Programmieren im allgemeinen und fiir die
Numerik im besonderen eine Vielzahl von Neuerungen. So sind vor allem die neuen
Méglichkeiten der Feldverarbeitung, dynamische Felder, Zeiger, Module und benutzerde-
finierte Datentypen und Operatoren fiir das zeitgemibe Programmieren unerlaflich.

Die vordefinierten Feldoperatoren und das neve Typ- und Operatorkonzept erméelichen
auch fiir Vektoren, Matrizen und andere Datenstrukturen eine naturliche, mathematische
Schreibweise von Ausdriicken und Zuweisungen. Fir die Numerik sind daneben die neuen
vordefinierten Funktionen von Bedeutung. Hierbei handelt es sich nicht etwa um weitere
mathematische Funktionen, sondern hauptsichlich um numerische Abfragefunktionen,
numerische (und Bit-) Manipulationsfunktionen und Feldfunktionen. So kann man nun
unter anderem die Characteristika der Zahldarstellung in den verschiedenen Zahlformaten
erfragen, Mantisse und Exponent einer Gleitkommazahl extrahieren oder zusammensetzen
und die Nachbarn einer Gleitkommazahl bestimmen. AuBerdem sind alle Standardtypen
mit einem Parameter zur Auswahl einer der (maschinenabhingigen) Darstellungsarten
ausgestattet, so dafl zum Beispiel die verwendete Zahldarstellung (Rechengenauigkeit)
sehr einfach geindert werden kann.

Die erwahnten Hilfsmittel kénnen bei richtiger Verwendung die Portabilitit von Fortran 90
Programmen wesentlich verbessern. Leider ist dies aber keine Garantie fiir portable oder
wenigstens einigermafen kompatible Rechenergebnisse — erst recht nicht fiir mathema-
tisch sinavolle und zuverldssige numerische Lésungen. Uber dje mathematischen Eigen-
schaften der arithmetischen Operatoren, der Standardfunktionen und anderer vordefinier-
ter Funktionen wird auch im neuen Fortran 90 Standard (wie in FORTRAN 77) richts
ausgesagt. Insbesondere fehlen Genauigkeitsanforderungen jeglicher Art.

So sind berechnete Ergebnisse nach wie vor von Hardware, Compiler, Laufzeitsy-
stem, Code-Optimierung und anderen Faktoren abhdngig. Die neuen vordefinierten
Funktionen SUM, DOTPRODUCT und MATMUL sind aus numerischer Sicht beson-
ders gefahrlich. Hier kann durch Ausléschung innerhalb weniger Operationen das Er-
gebnis derart verfalscht werden, dafl s mit der tatsichlichen Lézung weder Voreei-
chen noch Gréfienordnung gemein hat. Berechnungen dieser Art sollten immer auf
Ausloschungseffete hin fberpriift werden, cs sci denn die Implementierung liefert pa-
rantierte Fehlerschranken. :

Werkzeuge zur genauen und automatisch verifizierten Losung numerischer Probleme sind
zwar in Fortran 90 nicht vorhanden, konnen aber dank der vordefinierten numerischen
Abfrage- und Manipulationsfunktionen in reinem Fortran 90 portabel geschrieben werden.
Dies warin FORTRAN 77 nicht méglich. Es wird eine Bibliothek von Fortran 90 Modulen
vorgestellt, mit deren Hilfe sich die erwahnten Probleme oft beheben oder umgehen lassen.
Genaue und zuverlissige numerische Ergebnisse sind aber in Fortran 90 nur mit einem
hohen Zusatzaufwand zu erreichen.
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The new Fortran standard [14], developed under the name Fortran 8z, now known as
Fortran 90, was finally adopted and published as an international standard in the sum-
mer of 1991. Fortran 90 offers a multitude of enhancements and extensions of the old
FORTRAN 77 language [2]. Among the most prominent new features are parameterized
intrinsic data types, extensive array handling facilities, dynamic arrays, user-defined data
types and operators, generic interfaces, pointers, and modules. The new concepts greatly
improve Fortran’s potential for well-structured and portable programming,.

Numerically, however, the Fortran 90 standard is still deficient since the mathemati-
cal properties of the arithmetic operators and mathematical functions, in particular any
accuracy requirements, remain unspecified. Thus, computational results still cannot be
expected to be compatible when using different computer systems with different floating-
point units, compilers, and compiler options. Even the use of floating-point processors
which all satisfy the same standard (e.g. [EEE 754 [3]) does not help much. As a conse-
quence, portability and reliability of numerical results is still extremely difficult to achieve.
In this respect there has been little improvement over the situation in FORTRAN 77.

A Fortran 90 module library called FORTRAN-XS5C (“Fortran extension for scientific
computing” ) is presented that attempts to remedy these problems. FORTRAN-XS5C is
a versatile numerical toolbox intended for use in a wide range of engineering/scientific
applications. The main objective of FORTRAN-XSC is to provide a highly portable
foundation for analyzing and improving the accuracy and reliability of numerical applica-
tion programs. In particular, FORTRAN-X5C is designed to facilitate the development
of numerical algorithms which deliver automatically verified results of high accuracy. For
such algorithms there is no need to perform an error analysis by hand.

The FORTRAN-XSC library is written entirely in standard-conforming Fortran 90
[14] and is fully portable. It automatfically adapts to the selected native floating-point
system of the computer on which it is compiled and exploits the hardware arithmetic
whenever possible. The library consists of a number of Fortran 90 modules featuring
accurate scalar, vector and matrix arithmetic for real and complex numbers and inter-
vals, accurate conversion routines for numeric constants and input/output data, multiple
precision arithmetic, reliable and highly accurate versions of the Fortran 90 intrinsic func-
tions SUM, DOTPRODUCT, MATMUL, and more. The user is given full control of the
rounding mode to be used in an operation. The result of every operation is optimal with
respect to the selected rounding, so all operations are guaranteed to be accurate to 1 ulp.
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1 Introduction

The common programming languages attempt to satisfy the needs of many diverse
fields. While trying to cater to a large user community, these languages fail to
provide specialized tools for specific areas of application. Thus the user is often left
with ill-suited means to accomplish a task. In recent years, this has become quite
apparent in numerical programming and scientific computing. Even though pro-
sramming has become more convenient through the use of more modern language
concepts, numerical programs have not necessarily become more reliable. This is
true even if “good” floating-point arithmetic (e.g. which conforms to the IEEE
Standard 754 for Binary Floating-Point Arithmetic [3]) is employed.

At the Institute of Applied Mathematics at the University of Karlsruhe there has
been a long-term commitment to the development of programming languages suited
for the particular needs of numerical programming. With languages and tools such
as PASCAL-XSC [19], C-XSC, ACRITH-XSC [12, 34], and ACRITH [10, 11],
the emphasis is on accuracy and reliability in general and on automatic result
verification in particular.

In the 1980s, the programming language FORTRAN-SC [5, 24] was designed as a
FORTRAN 77 extension featuring specialized tools for reliable scientific computing.
[t was defined and implemented at the University of Karlsruhe in a joint project
with IBM Germany. The equivalent IBM program product High Accuracy Arith-
metic — Ertended Scientific Computation, called ACRITH-XSC for short, was
released for world-wide distribution in 1990 [12]. Numerically it is based on IBM’s
High-Accuracy Arithmetic Subroutine Library (ACRITH) [10, 11], a FORTRANTTT
library which was first released in 1934.

When Fortran 90 finally became a standard in 1991, it was tempting to define
another language extension for scientific computing. However, in order to avoid
having to write another compiler, it was decided that the Fortran 90 language was
convenient and powerful enough to allow the implementation of most of the desired
features within the language — something completely impossible in FORTRAN 77.

Therefore, FORTRAN-XSC is made up of a set of portable Fortran 90 modules —
a versatile toolbox for accurate and reliable numerical computation. In particular,
FORTRAN-XSC is designed to facilitate the development of numerical algorithms
with autornatic result verification. Such algorithms deliver results of high accuracy
which are verified to be correct by the computer. For example, self-validating
numerical techniques have been successfully applied to a variety of engineering
problems in soil mechanics, optics of liquid crystals, ground-water modelling and
vibrational mechanics where conventional floating-point methods have failed.

The elementary arithmetic operations for real and complex numbers are available
with a choice of five different rounding modes: nearest (to the nearest floating-point
number), upwards (towards +00), downwards (towards —oo), towards zero (trun-
cation), and away from zero (augmentation). Additionally, the FORTRAN-XSC

package offers the corresponding interval operations which are essential for auto-
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matic result verification. Besides the elementary arithmetic operations, routines for
the conversion of numerical constants and input/output data are provided.

The new Fortran 90 intrinsic functions SUM, DOTPRODUCT, and MATMUL
are usually unreliable because they may suffer from cancellation of leading dig-
its. Therefore, an accurate and fully reliable alternative implementation using a
long fixed-point accumulator is offered by FORTRAN-XSC. Accurate accumula-
tion is essential in many algorithms to attain high accuracy. The accurate dot
product provides the foundation on which all vector/matrix products are built.
Furthermore, it may serve as a basis for a highly accurate implementation of the
Basic Linear Algebra Subroutines (BLAS), an “industry standard” defining a set
of commonly used vector/matrix operations [26]. For all of the aforementioned op-
erations and functions, the results are always optimal with respect to the selected
rounding. This implies that their error is never more than 1 ulp (1 unit in the last
place).

The Fortran 90 code is designed to allow a certain degree of optimization by the
compiler, especially vectorization. On certain architectures, code optimization can
be further improved by using special compiler directives or language extensions.

FORTRAN-XSC is closely related to the following standards:

Fortran 90 International Standard: Information technology — Programming lan-
guages — Fortran, ISO/IEC 1539:1991 (E) [14]

IEEE 754 IEEE Standard 754 for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985 [3]

IEEE 854 [EEE Standard 3854 for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Std 854-1987 [4]

LIA-1 Draft International Standard: Information technology — Language inde-
pendent arithmetic — Part 1: Integer and floating point arithmetic, ISO/IEC
CD 10967-1:1992 (formerly called Language Compatible Arithmetic Stan-
dard (LCAS)) [16] (in preparation)

The design of FORTRAN-XSC has also been influenced by other research in the
area of computer arithmetic. The simulation of double-precision or higher precision
arithmetic in software has been the subject of a number of investigations. Some of
the early work was done by Moller [25], Kahan [17], Dekker (8] and Linnainmaa [23].
A recent summary which appeals to hardware manufacturers to make exact floating-
point operations accessible to the users is given in [6]. A vectorizable FORTRAN 77
version of the arithmetic runtime operations needed to run ACRITH-XSC [12] was
designed and implemented by Schmidt [28]. A rigorous mathematical definition of
computer arithmetic and roundings is given by Kulisch and Miranker in [21, 22].
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2 Principles and Requirements

The module library FORTRAN-XS5C consists of a number of Fortran 90 mod-
ules providing various arithmetic operations and other fundamental tools for a
given floating-point system (which is usually provided by the hardware). At
the Fortran 90 level, this floating-point system is identified by its kind type pa-
rameter value fpkind. The corresponding intrinsic types are REAL(fpkind) and
COMPLEX(fpkind).

Since FORTRAN-XSC automatically adapts to the specified underlying floating-
point system, an extension to other floating-point systems is straightforward. All
one has to do is to specify a different kind type parameter value fpkind and re-
compile all the modules. However, in order to avoid name clashes, global names
such as module names and derived (data) type names must be changed before re-
compiling. If several floating-point systems are to be supported at the same time,
conversion routines (with rounding control) must also be provided in order to be
able to convert from one to the other.

2.1 Floating-Point System

A floating-point system F' = F(b,p, minerp, mazezp) is defined by the following
characteristics: its base (or radix) b, its precision (or mantissa length) p, and its
exponent range, bounded by the minimal exponent minexp and the maximal ex-
ponent mmarerp. These characteristics can be obtained in a portable fashion in
Fortran 90 via the intrinsic inquiry functions RADIX, DIGITS, MINEXPONENT, and
MAXEXPONENT, respectively. The letter F' will be employed indiscriminately for a
floating-point system and for the set of floating-point numbers it defines.

A floating-point number x in F is either 0, or it consists of a sign, a fixed-length
mantissa with digits dy,ds,...,d,, and an exponent e with minerp < e < marezp:

T = tb”id,-b“'

=1

According to this definition, the (radix) point is just to the left of the first digit of
the mantissa. This convention is not important, however, since this can always be
achieved by formally shifting the exponent range. The mantissa is given in base
b notation, i.e. all d; € {0,...,6—1}. A floating-point number is normalized if
its leading mantissa digit d; i1s nonzero. Normalized floating-point numbers have
a unique representation. The Fortran 90 standard uses “*model numbers”, which
are normalized (or zero) by definition, to speak of floating-point numbers. A de-
normalized floating-point number is characterized by d; = 0 and ¢ = minezp.
Denormalized numbers are uniformly distmbuted around 0 (between the largest
negative and the smallest positive normalized floating-point number).
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The exponent of a foating-point number x (in the sense above) will be denoted by
e(z). It can be obtained via the Fortran 90 intrinsic function EXPONENT (x). Also,
the notation

ulp(z) ;= bet#)-»

is used to mean | unit in the last place of a floating-point number z. In Fortran 90,
the intrinsic function SPACING(x) can be employed to determine 1 ulp relative to
z. For any floating-point number z, r+ulp(z) and = —ulp(z) are the neighboring
floating-point numbers above and below z, unless one of them overflows or under-
flows, or unless = 15 an integral power of the base of the Hoating-point system. In
the latter case, if £ = b* for some integer n, then there are b—1 floating-point
numbers between z —ulp(z) and z. By symmetry to zero, an analogous statement
holds for z = —b". The immediate neighbor above/below any floating-point num-
ber x can be obtained in a portable way by calling the Fortran 90 intrinsic function
NEAREST(x,d) with a positive/negative d, respectively.

Many commeon floating-point systems allow denormalized numbers, for example
both IEEE Standards [3, 4]. This additional characteristic of a floating-point sys-
tem cannot be determined in any portable way in Fortran 90 since the Fortran 90
standard uses “model numbers” — which are normalized by definition — when
speaking of floating-point numbers. By default FORTRAN-XS5Cassumes floating-
point numbers to be normalized, but the use of denormalized numbers is allowed if
the underlying floating-point system supports them. The flag denorm is provided
to indicate whether denormalized numbers are allowed or not (LIA-1 [16] makes a

similar provision). However, the user has to explicitly set the flag denorm to true
to tell FORTRAN-XSC that denormalized numbers are supported.

2.2 Rounding

A rounding is a special mapping from the real numbers R onto the floating-point
numbers /. Any rounding () must satisfy the following two conditions:

1. The floating-point numbers F' must be invariant under the rounding ():
(O(s)=s forallseF.

2. The rounding () must be a monotonic function on the real numbers R:
r<y=z) < Oly) foralz,y €R.

In other words, a rounding is a monotonic, nondeereasing projection from R onto
F'. This ensures that a rounding is always accurate to 1 ulp (one unit in the last
place of the mantissa of a floating-point number). In particular. if a real number
r 15 already representable in F'| any rounding must return that same value z. [f
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a real number r is not representable in F, a rounding must return one of the two
neighboring floating-point numbers (either the one above or the one below ).

Today, most computers provide at least so-called “faithful” arithmetic, which at
least guarantees 1 ulp accuracy. However, traditionally, the monotonicity rule is
not generally observed by the hardware arithmetic of computers.

Whenever an operation requires a rounding, the following five roundings {or round-
ing modes) are available in FORTRAN-X5C:

N | Nearest (to the nearest floating-point number)
7, | towards Zero (truncation)
[
5]

towards Infinity (away {rom zero, augmentation )
Upwards A (upwardly directed, to 400}
| D | Downwards V (downwardly directed, to —oc)

Except for the rounding away from zero, these are the same roundings that are
required by the IEEE Standards. Also, the first three rounding modes are sign-
symmetric: ()(—z) = — () (z), whereas the last two are not. Rather, the last two
satisfy the symmetry rule: V(—z) = —A(z) (or, equivalently, A(—z) = —V(z)).

2.3 System Requirements

In order for FORTRAN-XSC to function properly, the system on which it is com-
piled and run must satisfy some minimal requirements. The most important of
these is that the intrinsic floating-point arithmetic provided by the system (typi-
cally in hardware) be faithful. This means that the four elementary floating-point
operations +,—, #, / must be accurate to 1 ulp. Note that 1 ulp (least bit) ac-
curacy implies that whenever the mathematically exact result of an operation 1s
representable as a floating-point number, the computed result is ezact. Thus the
maximum error is always less than 1 ulp. This guarantees that certain operations
will be performed without error (e. g. addition of two floating-point numbers with
the same exponent and opposite signs).

Least bit accuracy of the elementary machine operations is crucial in many places
in the module library. On the other hand, a particular rounding mode is not
required. In fact, it may well be that the machine “rounding” is not monotonic.
In practice, the above accuracy requirement excludes only very few of the modern
machine architectures (e.g. Cray vectorprocessors, which do not provide faithful
arithmetic).

Another prerequisite concerns the Fortran 90 compiler (and compiler options) with
which the FORTRAN-X5C module package is translated. The Fortran 90 compiler
must respect parentheses in expressions, that is, the intended order of evaluation
must be preserved. There are a number of places in the module library where any
change to the order of evaluation would have numerically disastrous effects. Un-
fortunately, this requirement will sometimes preclude the use of high optimization
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levels. Note, howewver, that a Fortran 90 processor that violates the integrity of
parentheses does not conform to the Fortran 90 standard. Despite all this, large
parts of the library are vectorizable.

For FORTRAN-XSC to function properly, it is also important that the Fortran 90
intrinsic functions for numeric inquiry and floating-point manipulation plus some
others work without fail. FORTRAN-XSC has to rely on these functions (see
section 6).

3 Arithmetic Modules

3.1 Exact Floating-Point Operations

In FORTRAN-XSC, the design principle for elementary arithmetic is to implement
the exact operations first since they are the most general, and to base the operators
with rounding control on the exact operations. For the four arithmetic operations
f,—, =, / it is possible to define and implement exact floating-point operations
via subroutines with four floating-point arguments each: two input and two output
arguments, all in the same floating-point format. In this context, exact means
that the computed result is mathematically correct, that is, no information about
the true mathematical result of the operation 1s lost. As long as no exception
(such as overflow, underflow, or division by zero) occurs, the result of each of these
floating-point operations can be represented without error by a pair of floating-point
numbers in the same format as the operands.

The set of subroutines for exact floating-point arithmetic i1s summarized in the
following table:

subroutine arguments mathematical specification

name n ] out
add_exact | (x, y, h, 1) |z +y=h+1

/ with e(l) € elh)—p unless [ =10
sub_exact | (x, v, h, 1) |z—y=h+1
with e(l) <e(h)—p unless [ =0
mul_exact | (x, y, h, 1) |z*y=h+!
with e{l) < e(h)—p unless [ =0
div_exact | (x, y, q, ) |z =qy+Tr

with |r| < |y|-ulp(g) unless ¢ =10

In the case of addition, subtraction and multiplication, the high-order part & and
the low-order part [ are floating-point numbers whose mathematical sum is the
exact result of the operation and which do not overlap, i.e. their exponents differ
by at least p (the precision or mantissa length), unless [ = 0. In the case of division,
a partial quotient g and the corresponding exact remainder r are produced, again
both floating-point numbers. The exponent difference e(z) — ¢(r) must sometimes
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be allowed to be p— 1, while at other times it is required to be at least p. Essentially,
this means that the relationship must be |r| < |y| - ulp(q) and not |r| < ulp(x).

A proof of the fact that the result of these operations can always be represented by
two floating-point numbers (unless an exception occurs) can be found in [6].

3.2 Elementary Arithmetic

Fortran 90, as opposed to ACRITH-XSC [12] and FORTRAN-XSC, does not pro-
vide any means for automatic error control or for deliberate rounding control. In
particular, the arithmetic operators with directed roundings +<, +>, =<, =>, *<
*> /<, />, which are predefined in ACRITH-XSC, are not available in Fortran 90.
Thus, regrettably, Fortran 90 does not provide access to the rounded floating-point
operations defined by the IEEE Standards 754 and 854 [3, 4]. In view of the steadily
increasing number of processors conforming to these standards, this is most unfor-
tunate for the whole numerical community.

The elementary arithmetic operations +,—, %, / for real (and complex) numbers
are available with the five rounding modes provided by FORTRAN-XSC. Al-
ternatively, the rounding mode can be set by calling a special subroutine named
set_rounding. The elementary operations are then accessible via the generic oper-
ators .ADD., .SUB., .MUL., and .DIV., applying the rounding specified in the last
call to set_rounding. As long as the rounding has never been set by the user, it
defaults to nearest.

Experience shows that a default rounding mode is generally useful only to compute
appronimations. The upwardly and downwardly directed roundings, on the other
hand, are typically used in pairs to do interval arithmetic. Unfortunately, most
IEEE floating-point processors do not provide the arithmetic operations with the
rounding mode integrated into the instruction code. Rather, they require a special
instruction to change the rounding mode to be used in subsequent operations. Note
that switching the rounding mode to upwards before evaluating an expression does
not generally deliver an upper bound to the value of the expression by any means,
nor will downwards deliver a lower bound.

The following table lists the elementary operators with rounding control:

generic || Nearest Zero Infinity Up Down
.ADD. .ADDN. | .ADDZ. | .ADDI. | .ADDU. | .ADDD.
.5UB. .SUBN. | .SUBZ. | .SUBI. | .SUBU. | .SUBD.
.MUL. .MULN. | .MULZ. | .MULI. | .MULU. | .MULD.
.DIV. .DIVN. | .DIVZ. | .DIVI. | .DIVU. | .DIVD.

Of course, on any particular machine featuring [EEE arithmetic in hardware, the
elementary arithmetic operations with one of the rounding modes nearest, towards
zero, upwards, and downwards may be implemented using the hardware opera-
tions for greater efficiency. This cannot be done exclusively in standard-conforming




FORTRAN-XSC: A Fortran 90 Module Library for Scientific Computing 9

Fortran 90, however. Thus FORTRAN-XSC does not currently provide any special
support for IEEE hardware. However, an adaptation is certainly possible.

FORTRAN-XSC also provides rounding control for the conversion of numeric con-
stants and input/output data. This ensures that the user knows exactly what data
enters the computational process and what data is produced as a result. Besides
the default rounding, the monotonic downwardly and upwardly directed roundings,
svmbolized by < and >, respectively, are available. For further details, refer to
section 4.

3.3 Complex Arithmetic

Complex addition and subtraction are trivially reduced to the corresponding real
operations. Complex multiplication requires the accurate evaluation of an expres-
sion of the form ab + ed. Such expressions are sometimes called short dot products.
Because of the danger of cancellation of leading digits, exact double-length prod-
ucts need to be computed and added/subtracted with sufficient accuracy to allow
correct rounding. For reasons of efficiency and because it is a relatively frequent
operation occurring in many applications, the short dot product is included as a
special operation. Whenever a dot product involves only two terms, this operation
can be employed for greater efficiency.

Complex division is rather intricate and requires careful implementation. A special
algorithm is needed to obtain sufficient accuracy for correct rounding.

3.4 Interval Arithmetic

By controlling the rounding error at each step of a calculation, it is possible to
compute guaranteed bounds on a solution and thus verify numerical results on
the computer. Enclosures of a whole set or family of solutions can be computed
using interval arithmetic, for example to treat problems involving imprecise data or
other data with tolerances, or to study the influence of certain parameters. Interval
analysis is particularly valuable for stability and sensitivity analysis. It provides
one of the essential foundations for reliable numerical computation.

FORTRAN-XS5C provides complete interval arithmetic consisting of the derived
types INTERVAL and COMPLEX_INTERVAL, arithmetic and relational operators, and
the necessary type conversion functions. The result of every arithmetic operation
1s accurate to 1 ulp.

An interval is represented by a pair of (real or complex) numbers, its infimum
(lower bound) and its supremum (upper bound). For the infimum, the direction of
rounding is always downwards, for the supremum, upwards, so that the inclusion
property is never violated. By adhering to this principle, the computed result
interval will and must always contain the true solution set.
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The arithmetic interval operators +, =, *, / as well as the operators .IS. {intersec-
tion) and .CH. (convex hull) are provided. The relational operators for intervals
are the standard comparison operators and the operators .SB. (subset), .SP. (su-
perset), .DJ. (disjoint), .IN. (point contained in interval}, and .INT. (point or
interval contained in interior of interval).

In order to be able to access interval bounds, to compose intervals and to perform
various other data type changes, type conversion functions such as INF (infimum),
SUP (supremum), and IVAL are available. Other useful functions include MID (mid-
point of an interval), RADIUS, and DIAM (diameter (width) of an interval).

The arithmetic operations for real and complex intervals are implemented using the
elementary arithmetic operations with upwardly and downwardly directed rounding
to compute the infimum and the supremum. However. complex interval multipli-
cation and division require more sophisticated algorithms. FORTRAN-XSC also
provides a special notation for real and complex intervals and routines for the con-
version of interval constants and input/output data. For details, refer to section 4.

3.5 Vector/Matrix Arithmetic

In traditional programming languages such as FORTRAN 77, Pascal, or Modula-2,
each vector/matrix operation requires an explicit loop construct or a call to an ap-
propriate subroutine. Unnecessary loops, long sequences of subroutine calls, and
explicit management of loop variables, index bounds and intermediate result vari-
ables complicate programming enormously and render programs virtually incom-
prehensible.

Fortunately, the situation has improved a lot with Fortran 90. Fortran 90 offers ex-
tensive array handling facilities such as allocatable arrays, array pointers, subarrays
(array sections), various intrinsic array functions, and predefined array operators.
All array operators are defined as element-by-element operations in Fortran 90.
This definition has the advantage of being uniform, but the disadvantage that
highly common operations such as the dot product (inner product) of two vectors
or the matrix product are not easily accessible. The Fortran 90 standard does not
provide an operator notation for these operations, and it prohibits the redefinition
of an intrinsic operator (e.g. *) for an intrinsically defined usage. Instead, the
dot product is only accessible through the intrinsic function call DOTPRODUCT (V, V),
the other vector/matrix products through the intrinsic function calls MATMUL(V M),
MATMUL (M, V), and MATMUL(M,M). Clearly, function references are far less readable

and less intuitive than operator symbols, especially in complicated expressions.

If one wants to reference the intrinsic functions DOTPRODUCT and MATMUL via an op-
erator notation, there are only two choices: either one defines a new operator sym-
bol, say .MUL., for all possible type combinations that can occur in vector/matrix
multiplication, or one defines new data types, e.g. RVECTOR, DRVECTOR, CVECTUOR,
DCVECTOR, RMATRIX, ... and then overloads the operator symbol * for all possible
type combinations of these new types. Both of these methods are quite cumbersome
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and seem to contradict one of the major goals of the Fortran 90 standard, namely
to cater to the needs of the numerical programmer, in particular by providing ex-
tensive and easy-to-use array facilities. Note that both of these methods require a
minimum of 64 operator definitions to cover all of the intrinsic cases. If more than
two REAL and two COMPLEX types (single and double precision) are provided by an
implementation, this number becomes even larger.

The following Fortran 90 intrinsic functions are numerically critical because of the
accumulation of intermediate rounding errors and the possibility of severe cancel-
lation in the summation process:

function operation performed

SUM summation of the components of a vector
DOTPRODUCT | dot product of two vectors

MATMUL product of two matrices or of a vector and a matrix

The most serious drawback of these Fortran 90 intrinsics is that they are generally
unreliable numerically. Since the Fortran 90 standard lacks any kind of accuracy
requirements, it seems inevitable that different implementors will implement these
functions differently. Ewven worse is the fact that any traditional floating-point
summation technique is sensitive to the order of summation and is sure to fail in
ill-conditioned cases because leading-digit cancellation may completely destroy the
result. On vector processors, the problem is compounded by automatic vectoriza-
tion by the compiler. The user has virtually no influence on the order in which
the accumulation is performed. Typically, on pipelined processors, several partial
sums are first computed and then added to form the final result. In the process,
the summands are completely scrambled.

Now that these critical functions have been “formally standardized” (but not
numerically), the potential danger to the user becomes very evident. For the
Fortran 90 programmer, these functions appear to be very welcome since they seem
to provide a portable way of specifying these highly common operations, especially
as they are inherently difficult to implement. However, the user has no knowledge
or control of the order in which the accumulation is performed. This makes any
kind of realistic error analysis virtually impossible.

The inevitable consequence of this situation is that these three new intrinsic func-
tions are unusable for all practical purposes — at least if one wishes to write portable
Fortran 90 programs which deliver reliable results. Tests on large vector computers
show that simple rearrangement of the components of a vector or a matrix can re-
sult in vastly different results [9, 27]. Different compilers with different optimization
and vectorization strategies and different computational modes (e. g. scalar mode
or vector mode with a varying number of vector pipes) are often responsible for
incompatible and unreliable results.

As an example, consider the computation of the trace of the n xn product matrix
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' of a nxk matrix 4 and a kxn matrix B, which is defined by

k

trace (C') = trace (A- B) = iﬂ’,. = Zn: Z Aij* By .
i=1

i=1l =1

In ACRITH-XSC [12] this double sum can be calculated by the following so-called

dot precision expression:
TRACE = #*( SUM(A(i,:)*B(:,i), i =1, a) )

The notation is simple and efficient and the computed result is guaranteed to be
accurate to 1/2 ulp in every case.

In contrast, the corresponding Fortran 90 program looks something like this:

TRACE = 0.0
pDOI=1, N

TRACE = TRACE + DOUTPRODUCT(A(I,:), B(:,I))
END DO

Here the computational process involves on the order of 2nk rounding operations if,
as is typical in the computation of dot products, the products are rounded before
they are added and the accumulation is performed in the same floating-point format
in which the elements of A and B are given. Far more critical is the fact that
cancellation can, and often will, occur during summation. This leads to results of
unknown accuracy at best, or to completely wrong and meaningless results if many
leading digits cancel. Since the Fortran 90 standard does not impose any accuracy
requirements on intrinsic functions such as SUM, DOTPRODUCT, and MATMUL, there are
no simple remedies.

Thus, unless an implementation gives explicit error bounds for these intrinsic func-
tions, every Fortran 90 programmer should think twice before using them, especially
if the possibility of leading digit cancellation cannot be excluded.

For the above reasons, FORTRAN-XSC provides an alternative, highly accurate
implementation of these functions which are so fundamental to most branches of
mathematics. In order to be able to compute the dot product of arbitrary vec-
tors with 1 ulp accuracy, the summation of the exact double-length products is
performed without error in a long fired-point accumulator. Such an accumulator
covers twice the exponent range of the underlying floating-point system in order to
accomodate all possible double-length products. In the case of FORTRAN-XSC,
it is implemented as a sequence of floating-point segments (instead of integer seg-
ments as is the case in ACRITH [10, 11], ACRITH-XSC [12], and PASCAL-XSC
[19]) because it is assumed that this will improve the performance of the elementary
dot product operations. However, this assumption may be false for certain modern
RISC processors. The exact (unrounded) result of an accumulation process can
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be stored to full accuracy in a variable of type DOT_PRECISION or rounded to a
floating-point number using one of the five available roundings.

The dot product for real vectors and for real interval vectors are both elementary
in the sense that the interval case cannot be reduced to the real case in any simple
way. The complex and complex interval dot products, on the other hand, are easily
reduced to the corresponding real case. Analogously, two routines are necessary for
the summation of real numbers and real intervals. Again, the complex cases are
reducible to their real analogues.

All vector/matrix products are implemented via the accurate dot product and
produce results which are accurate to 1 ulp in every component. Addition-
allv, FORTRAN-XSC provides the arithmetic element-by-element operations with
rounding control for real and complex vectors and matrices. The operators (and
rounding modes) are the same as for real and complex numbers. The arithmetic
clement-by-element operations for vectors and matrices with interval and complex
interval components are also available.

4 Data Conversion for Input/Output

FORTRAN-XSC provides routines for accurate conversion of numerical data from
one base to another and from a character string to one of the elementary data types
of FORTRAN-XSC (for input) and vice versa (for output). All of the non-interval
conversions are available with a choice of five roundings. For interval data, the
rounding is always to the smallest possible interval enclosing the given interval.

On input, the constant given in the input string may be specified with an arbi-
trary number of digits in any base in the range 2-36. The letters A-Z are used to
represent the digits 10-35, respectively. A provision for bases greater than 36 has
not been made. It is assumed that any other base of interest is a power of one of
those provided. The conversion uses as many digits as are necessary to determine
the correctly rounded internal floating-point number or interval. On output, an
arbitrary number of digits may be requested by the user. The length, the base and
the rounding of the output constant can be chosen by the user.

The following functions are available for input:
REAL (string, rounding)
CMPLX (string, rounding)
IVAL (string)
CIVAL (string)

The functions for output are of the form
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STR (number, base, length, rounding)

where number may be of type REAL, COMPLEX, INTERVAL, or COMPLEX_INTERVAL.

For the conversion from string to string, the following function is provided:
STR (string, base, length, rounding)

In some sense, this function is the ultimate conversion routine. It is capable of
correctly converting a constant specified with an arbitrary number of digits in a
given base to any other base, generating the prescribed number of digits in the
target number system while respecting the rounding mode.

In the above functions, the type of the argument string and the result type of
all functions with generic name STR is VARYING_STRING. This derived type for
varying-length character strings is defined in module ISO_VARYING_STRING, whose
functional definition is to become a collateral standard (currently draft interna-
tional standard ISO/IEC CD 1539-1 [15]) to the Fortran 90 standard [14]. This
module provides elementary tools for working with fully dynamic character strings
of arbitrary length.

Non-advancing (stream) [/O is (finally!) available in Fortran 90. This enables read-
ing and writing of partial records, making it possible to define one’s own [/O in a
portable and flexible way. In combination with the above routines, input/output
with rounding control is straightforward.

Reading from left to right, the syntax of a constant is as follows. The constant may
be optionally preceded by a + or - sign. The mantissa is specified as a sequence
of digits which may or may not include a (radix) point. The base (radix) is given
in decimal notation and is appended to the mantissa with a % sign as separator.
The default for the base is 10 (decimal). If the base is greater than 10 and the first
significant digit of the mantissa is represented by a letter, i.e. at least 10, then the
mantissa should be preceded by an extra zero. The exponent is introduced by the
letter E or D (for compatibility with Fortran), which may be uppercase or lowercase.
The value of the exponent is given by an optionally signed integer. The sign, the
(radix) point, the base, and the exponent are optional. The base and the exponent
are always in decimal notation.

The parameter rounding is optional. If it is omitted on cutput, the rounding to

be applied is the default rounding. If it is omitted on input, the rounding may
be specified within the constant notation in the argument string. If a rounding
is specified in the input string, the rounding symbol (< for downwards or > for
upwards) must precede the constant. The whole notation should be parenthesized
in this case. If no rounding is specified at all, the rounding used is the default
rounding currently in effect.

Examples of the accepted syntax are:
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constant interpretation

1001101%2 binary constant = 77 (decimal)

-76.50%8 octal constant = 62.625 (decimal)
+0FFAD00%16E-4 hexadecimal constant = 233.625 (decimal)
(<-3.14159265E+000) | decimal constant rounded downwards
(>0Z.YX4%36E2) base 36 constant rounded upwards = 46617.111. ..

For intervals, no rounding can be specified. The rounding is always to the smallest
enclosing interval. There is a special notation for intervals:

| constant interpretation

| (<-2.00001,-1.99999>) real interval enclosing —2

I: (<-3.1415926535898>) optimal (1 ulp wide) enclosure of —7 {approx.) |
| ((<2.9,3.1>),(<1ED,1>)) | complex interval with Re around 3 and Im =1

| (<(2.9,1E0),(3.1,1)>) same complex interval as above

5 Exception Handling

[t is an unfortunate fact that Fortran 90 does not provide any exception handling
facilities. Thus it is impossible to treat exceptions which occur during runtime in
any simple and portable way — if at all. This is particularly detrimental to nu-
merical applications, where exceptional cases are quite common. FORTRAN-X5C
has to live with this situation and tries to preclude the possibility of numerical
exceptions such as overflow, underflow, and division by zero in the floating-point
operations it uses by preliminary testing and scaling as appropriate.

Among others, the following arithmetic exceptions are recognized by

FORTRAN-XSC:

exception meaning
invalid_op | invalid operation
div_by_zero | division by zero

overflow exponent overflow
underflow exponent underflow
inexact result of an “exact” operation is inexact |

The IEEE Standards 734 and 834 [3, 4] define the same five types of exceptions,
whereas LIA-1 [16] does not distinguish division by zero and invelid operation and
does not recognize the exception inezact.

Trap handling can be enabled or disabled for each exception individually. All
exceptions are enabled by default. During runtime, the user may inquire about the
occurrence of disabled exceptions at any point in time. It is also possible to define
the manner in which an exception is to be treated by a user-written trap handling
routine.
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6 Useful Fortran 90 Intrinsic Functions

Besides the numeric inquiry functions RADIX, DIGITS, MINEXPONENT, and
MAXEXPONENT which are needed to determine the main characteristics of a floating-
point system, the following inquiry functions are sometimes useful:

function | result

EPSILON | Wilkinson epsilon (largest rel. dist. betw. 2 adjacent fl-pt numbers)
HUGE largest floating-point number (maxreal)

| TINY smallest positive normalized floating-point number (minreal)

For the low-level treatment of floating-point numbers, the following floating-point
manipulation functions are particularly helpful in ensuring better portability of the
Fortran 90 code:

function reference result

EXPONENT(x) exponent of floating-point number z (base b)
FRACTION(x) fraction (mantissa) of floating-point number =
SET_EXPONENT(x,e) | floating-point number = with exponent replaced by e
SCALE(x,k) floating-point number = multiplied by b |
NEAREST (x,d) floating-point neighbor of r in direction of sign of d
SPACING (x) 1 ulp relative to floating-point number r L

None of these intrinsic functions were available in FORTRAN 77. This made a
portable implementation of floating-point software impossible in FORTRAN 77.
Large parts of FORTRAN-XSC depend on these intrinsics. If they are not abso-
lutely reliable, the module library cannot function properly.

7 Conclusion and Outlook

In the foreword of the Fortran 90 standard [14], under the heading “Numerical
computation”, one finds the following statement: “Scientific computation is one
of the principal application domains of Fortran, and a guiding objective for all of
the technical work is to strengthen Fortran as a vehicle for implementing scientific
software.” In a modern programming language whose declared goal is to support
scientific applications, a clear specification of the exact mathematical behavior and
accuracy of the arithmetic operators and intrinsic functions should be an integral
part of the language definition. Contrary to its claim, the Fortran 90 standard does
not really provide much better support in this domain than did FORTRAN 77.
Fortran 90 does, however, provide the necessary language tools which enable a
software library such as FORTRAN-XSC to provide such numerical support. Un-
fortunately, as long as there is no adequate language and hardware support, a large
performance penalty seems inevitable.
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In the presence of a growing number of floating-point processors conforming to
standards such as the IEEE Standard 734 for Binary Floating-Point Arithmetic [3]
or the IEEE Standard 854 for Radix-Independent Floating-Point Arithmetic [4],
the reluctance of programming language standardization committees to provide
casy access to the elementary arithmetic operations with directed roundings by
incorporating special operator symbols such as +<, +>, =<, =>, *<, *> /< /> s
incomprehensible. Since none of the major programming languages provide any
simple means to access these [undamental operations, it is not astonishing that
they are seldom used. Interval arithmetic is one way of making these operations
accessible and more widely accepted.

The IMACS-GAMM Resolution on Computer Arithmetic [13] requires that all
arithmetic operations — in particular the compound operations of vector comput-
ers such as “multiply and add”, “accumnulate”, and “multiply and accumulate”™ —
be implemented in such a way that guaranteed bounds are delivered for the de-
viation of the computed floating-point result from the exact result. A result that
differs from the mathematically exact result by at most 1 ulp (i.e. by just one
rounding) is highly desirable and always obtainable, as demonstrated by various
existing implementations [10, 11, 12, 34, 19]. The “Proposal for Accurate Floating-
Point Vector Arithmetic” [7] essentially requires the same mathematical properties
for vector operations as are required for the elementary arithmetic operations by
the IEEE Standards. Hopefully, such user requests will influence the hardware
design of computing machinery, especially of supercomputers [18, 20], in the near
future. Accuracy requirements are also highly desirable in programming language
standards to make scientific software more portable in the numerical sense.

In its current state, FORTRAN-XSC provides only the essential foundations for
accurate and reliable numerical computing. With the fundamental modules tested
and running, things are only beginning to become interesting. An alternative,
highly accurate implementation of the Basic Linear Algebra Subroutines (BLAS)
[26] is planned for the near future. Modules providing arithmetic for varying-
precision numbers and intervals, for polynomials, and for truncated Taylor series are
soon to follow. At the same time, fundamental application programs such as solvers
for linear and nonlinear systems and for ordinary differential equations are being
written to test the module library and to broaden the basis of FORTRAN-X5C.

Acknowledgement

My special thanks go to Enrik Berkhan and Arno Schauman who did (and are

still doing) most of the programming. The implementation of FORTRAN-XSC
would not have been possible without their relentless efforts. [ would also like to
thank my colleagues at the Institute of Applied Mathematics for their willingness
to discuss any problems and answer any questions. I am particularly indebted to
my colleague Dr.-Ing. Lutz Schmidt for his invaluable advice on vectorization and
the software simulation of computer arithmetic. Above all, I would like to thank
Prof. Kulisch for creating a fruitful research atmosphere at the Institute of Applied




18

Wolfeang V. Walter

Mathematics and for giving me the opportunity to pursue this project and to attend
many national and international Fortran 90 standardization meetings.

References

[1]

[2]

(3]

4]

Adams, E.; Kulisch, U. (eds.): Scientific Computing with Automatic Result Verifi-
cation. Academic Press, Orlando, 1992

American National Standards Institute: American National Standard Programming
Language FORTRAN. ANSI X3.9-1978, 1978,

American National Standards Institute / Institute of Electrical and Electronics En-
gineers: [EEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE 5td
T54-1985, New York, 1985,

American Natlonal Standards Institute /Institute of FElectrical and FElectron-
ics Engineers: [EEE Standard for Radiz-Independent Floating-Point Arithmetic.
ANSI/TEEE 5td 854-1987, New York, 1987.

Bleher, J. H.; Rump, S. M.; Kulisch, U.; Metzger, M.; Ullrich, Ch.; Walter, W.
(V.}: FORTRAN-5C: A Study of a FORTRAN Exztension for Engineering/Scientific
Computation with Access to ACRITH. Computing 39, 93-110, Springer, 1987.

Bohlender, G.; Kornerup, P.; Matula, D. W.; Walter, W. V.: Semantics for Eract
Floating Point Operations. Proc. of 10th IEEE Symp. on Computer Arithmetic
(ARITH 10} in Grenoble, 26.6.-28.6.1991, 22-26, IEEE Computer Society, 1991.

Bohlender, G.; Cordes, D.: Kndfel, A.; Kulisch, U.; Lohner, R.; Walter, W. V.:
Proposal for Accurate Floating-Point Vector Arithmetic. In [1], 87-102, 1992.

Dekker, T. J.: A Floating-Point Technique for Ertending the Available Precision.
Numerical Mathematics 18, 224-242, 1971.

Hammer, R.: How Reliable is the Arithmetic of Vector Computers? [n [29], 467-452,
1990.

[10] IBM System/370 RPQ, High-Accuracy Arithmetic. $A22-7093-0, IBM Corp., 1984,

[11] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH), General Information

Manual. 3rd ed., GC33-6163-02, IBM Corp., 1986.
..., Program Description and User's Guide. 3rd ed., SC33-6164-02, IBM Corp.. 1986.

[12] IBM High Accuracy Arithmetic — Eztended Scientific Computation (ACRITH-

X5C), General Information. GC33-6461-01, IBM Corp., 1990.
..., Reference. 5C33-6462-00, IBM Corp., 1990.

.+, Sample Programs. SC33-6463-00, IBM Corp., 1990.

..., How to Use. SC33-6464-00, IBM Corp., 1990.

..., Syntax Diagrams. SC33-6466-00, IBM Corp., 1990.




FORTRAN-XSC: A Fortran 90 Module Library for Scientific Computing 19

[13] IMACS, GAMM: Resolution on Computer Arithmetic. In Mathematics and Com-

[14]

[15]

[16]

1]

[18]

[19]

120]

[21]

[22]

23]

[24]

[25]

(26]

puters in Simulation 31, 297-298, 1989; in Zeitschrift fiir Angewandte Mathematik
und Mechanik 70, no. 4, p. T35, 1990: in Ch. Ullrich (ed.): Computer Arithmetic and
Self-Validating Numerical Methods, 301-302, Academic Press. San Diego, 1990; in
[29], 523-524, 1990; in E. Kaucher, S. M. Markov, G. Mayer (eds.): Computer
Arithmetic, Scientific Computation and Mathematical Modelling, IMACS Annals on
Computing and Appl. Math. 12, 477-478, ].C. Baltzer, Basel, 1991.

International Standards Organization: Information technology — Programming lan-
guages - Fortran. Int. standard ISO/IEC 1539:1991(E), 1991.

International Standards Organization: Varying Length Character Strings in Fortran.
Draft int. std. ISO/IEC CD 1539-1 (collateral std. to ISO/IEC 1539:1991(E)), 1992.

International Standards Organization: Information technology - Language indepen-
dent arithmetic — Part 1: Infeger and floating point arithmetic. Draft int. std.
ISO/IEC CD 10967-1:1992, 1992,

Kahan, W.: Further Remarks on Reducing Truncation Errors. Commun. ACM 8,
40, 1965.

Kirchner, R.; Kulisch, U.: Arithmetic for Vector Processors. Proc. of 8th [EEE
Symp. on Computer Arithmetic (ARITH8) in Como, 256-269, IEEE Computer
Society, 1987,

Klatte, R.; Kulisch, U.: Neaga, M.; Ratz, D.; Ullrich, Ch.: PASCAL-XSC
Sprachbeschreibung mit Beispielen. Springer, Berlin, Heidelberg, 1991.

: PASCAL-XSC Language Reference with Ezamples. Springer, Berlin, Heidel-
berg, 1992,

Knéfel, A.: Fast Hardware [Inits for the Computation of Accurate Dot Products.
Proc. of 10th IEEE Symp. on Computer Arithmetic (ARITH 10} in Grenoble, 70~
74, IEEE Computer Saciety, 1991,

Kulisch, U.; Miranker, W. L.: Computer Arithmetic in Theory and Practice. Aca-
demic Press, New York, 1981.

Kulisch, U.: Grundlagen des numerischen Rechnens: Mathematische Begriindung
der Rechnerarithmetik. Reihe Informatik 18, Bibl. Inst., Mannheim, 1976.

Kulisch, U.; Miranker, W. L. (eds.): A New Approach to Scientific Computation.
Notes and Reports in Comp. Sci. and Appl. Math., Academic Press, Orlando, 1983.

Linnainmaa, 5.: Analysis of Some Known Methods of Improving the Accuracy of
Floating-Peint Sums. BIT 14, 167-202, 1974.

Metzger, M.; Walter, W. (V.): FORTRAN-5C: A Programming Language for En-
gineering/Scientific Computation. In [29], 427-441, 1990.

Maller, O.: Quasi Double-Precision in Floating-Point Addition. BIT 5, 37-30, 1965.

NAG: Basie Linear Algebra Subprograms (BLAS). The Numerical Algorithms Group
Ltd, Oxford, 1990.




20
(27

(28]

[30]

31]

[32]

[33]

[34]

Wolfgang V. Walter

Ratz, D.: The Effects of the Arithmetic of Vector Computers on Basic Numerical
Methods. In [29], 499-514, 1990.

Schmidt, L.: Semimorphe Arithmetik zur Automatischen Ergebnisverifikation auf
Vektorrechnern. Ph. D. thesis, Univ, Karlsruhe, 1992

Ullrich, C. (ed.): Contributions to Computer Arithmetic and Self-Validating Numer-
ical Methods. IMACS Annals on Computing and Appl. Math. 7, J.C. Baltzer, Basel,
1990.

Walter, W. (V.): FORTRAN 66, 77, 88, -5C . . . — Ein Vergleich der numerischen
Eigenschaften von FORTRAN 88 und FORTRAN-5C. ZAMM 70, 6, T584-T587,
1990.

Walter, W. V.. Flerible Precision Control and Dynamic Data Structures for Pro-
grarnming Mathematical and Numerical Algorithms. Ph.D. thesis, Univ. Karlsruhe,
1990,

Walter, W, V.. Fortran 90: Was bringt der neue Fortran-Slandard fir das nu-
mertsche Programmieren? Jahrbuch Uberblicke Mathematik 1991, 151-173, Vieweg,
Braunschweig, 1991.

Walter, W. V.: A Comparison of the Numerical Facilities of FORTRAN-5C and
Fortran 90. Proc. of 13th IMACS World Congress on Computation and Appl. Math.
(IMACS '91) in Dublin, Vol. 1, 30-31, IMACS, 1991.

Walter, W. V.: ACRITH-X5C: A Fortran-like Langquage for Verified Scientific Com-
puting. In [1], 45-T70, 1992.




